МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАРАЧАЕВО-ЧЕРКЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ У.Д. АЛИЕВА»

Физико-математический факультет Кафедра алгебры и геометрии

> **УТВЕРЖДАЮ** И. о. проректора по УР М. Х. Чанкаев «29» мая 2024 г., протокол №8

Рабочая программа дисциплины

Современная алгебра

(наименование дисциплины (модуля)

Направление подготовки:

44.04.01 Педагогическое образование_ (шифр, название направления) Направленность (профиль) программы: _Математическое образование

Квалификация выпускника магистр_ Форма обучения Заочная, очно- заочная_

Год начала подготовки - 2023_

(по учебному плану)

Составитель: канд. физ. - мат. наук, доцент кафедры алгебры и геометрии Кубекова Б.С.

Рабочая программа дисциплины составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 44.04.01 Педагогическое образование, направленность (профиль) программы: «Математическое образование», утвержденного приказом Министерства образования и науки Российской Федерации от 22.02.2018, № 126, учебным планом, основной профессиональной образовательной программой высшего образования по направлению подготовки 44.04.01 Педагогическое образование, направленность (профиль) программы: «Математическое образование», локальными актами КЧГУ.

Рабочая программа рассмотрена и утверждена на заседании кафедры алгебры и геометрии на 2024-2025 уч. год.

Протокол № 9 от 17.05. 2024 г.

Содержание

1. Наименование дисциплины (модуля)
2. Перечень планируемых результатов обучения по дисциплине (модулю),
соотнесенных с планируемыми результатами освоения образовательной программы
3. Место дисциплины (модуля) в структуре образовательной программы
4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
5. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий б
6. Основные формы учебной работы и образовательные технологии, используемые при реализации образовательной программы
7. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)
7.1. Описание шкал оценивания степени сформированности компетенций13
7.2.Типовые контрольные задания или иные учебно-методические материалы, необходимые для оценивания степени сформированности компетенций в процессе освоения учебной дисциплины
7.2.1.Типовые задания к контрольным работам
7.2.2. Примерные вопросы к итоговой аттестации (экзамен)
7.2.3. Комплект тестов для проверки знаний обучающихся
8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
9. Требования к условиям реализации рабочей программы дисциплины (модуля)20
9.1. Общесистемные требования
9.2. Материально-техническое и учебно-методическое обеспечение дисциплины21
9.3. Необходимый комплект лицензионного программного обеспечения21
9.4. Современные профессиональные базы данных и информационные справочные системы
10. Особенности организации образовательного процесса для лиц с ограниченными возможностями здоровья
11. Лист регистрации изменений

1. Наименование дисциплины (модуля) СОВРЕМЕННАЯ АЛГЕБРА

Целью изучения дисциплины является: формирование знаний, умений и навыков, а также личностных качеств, обеспечивающих: понимание обучающимися тенденций развития современной алгебры, перспективных проблем научных исследований в сфере образования.

Для достижения цели ставятся задачи:

- изучить понятийный аппарат, необходимый для изучения дисциплины;
- овладеть фундаментальными методами современной алгебры;
- усвоить алгебраический язык, который связывает алгебру и другие фундаментальные предметы, которые изучаются в магистратуре;
- усвоить некоторые методические приемы, которые будут использоваться в последующей работе;
- получить знания из области алгебры необходимые для дальнейшего самостоятельного приложения основных алгебраических методов к разработке научных проблем и задач из области профессиональной деятельности.

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций обучающегося:

I		-	
Код компе- тенций	Содержание компетенции в соответствии с ФГОС ВО/ ОП ВО	Индикаторы достижения компетенций	Декомпозиция компетен- ций (результаты обучения) в соответствии с установ- ленными индикаторами
ПК-2	Способен анализировать результаты научных исследований, применять их при решении конкретных научноисследовательских задач в сфере науки и образования, самостоятельно осуществлять научное исследование	ПК-2.1. Демонстрирует знание особенностей проведения исследований в области математики и математического образования ПК-2.2. Решает исследовательские задачи с учётом содержательного и организационного контекстов ПК-2.3. Разрабатывает алгоритм и способы достижения проектируемых уровней своего профессионального и личностного роста	Знать: основные идеи, принципы и методы современной алгебры, особенности проведения исследований в области математики и математического образования. Уметь: решать задачи современной алгебры, решать исследовательские задачи с учётом содержательного и организационного контекстов. Владеть: методами современной алгебры, навыками разработки алгоритма и способов достижения проектируемых уровней своего профессионального и личностного роста

3. Место дисциплины (модуля) в структуре образовательной программы

Данная дисциплина (модуль) относится к Блоку 1. Дисциплина (модуль) изучается на 1 курсе

МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ	ОП ВО
Инлекс	Б1.О.08

Индекс Б1.0.08

Требования к предварительной подготовке обучающегося:

Данная учебная дисциплина является базовой и опирается на входные знания, умения и компетенции, полученные по «Алгебра», «Геометрия», «Математический анализ», «Математика» в объеме средней школы и программ бакалавриата

Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Дисциплина «Современная алгебра» является самостоятельной дисциплиной, необходимой для последующего освоения других дисциплин вариативной части базового и профессионального циклов, а также для выполнения научно-исследовательской работы магистра

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины (модуля) составляет <u>4</u> 3ET, <u>144</u> академических часа.

Объём дисциплины	Всего	часов
	для очно-	для заочной
	заочной	формы обуче-
	формы	ния
Общая трудоемкость дисциплины	144	144
Контактная работа обучающихся с преподавателем (по видам учебных занятий)* (всего)	36	12
Аудиторная работа (всего):	36	12
в том числе:		
лекции	18	4
семинары, практические занятия	18	8
практикумы		
лабораторные работы		
Внеаудиторная работа:		
курсовые работы		
консультация перед экзаменом		
Dygayayananya nagana nawa nawa nawanan wasanan wasan wasan		

Внеаудиторная работа также включает индивидуальную работу обучающихся с преподавателем, групповые, индивидуальные консультации и иные виды учебной деятельности, предусматривающие групповую или индивидуальную работу обучающихся с преподавателем), рефераты, контрольные работы и др.

Самостоятельная работа обучающихся (всего)	72	124
Контроль самостоятельной работы	36	8
Вид промежуточной аттестации обучающегося (зачет / экзамен)	экзамен	экзамен

5. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Для заочной формы обучения

№ п/п	Курс/ семестр	Раздел, тема дисциплины Раздел 1. Основные алгебраические	Общая трудо- емкость (в часах) всего	вклю ную ј ся	очая са работу и тру (в ч торны ия			Плани- руемые результа- ты обучения	Формы текущего контроля
1	1/1	структуры и их свойства Основные алгебраические структуры: полугруппа, моноид, группа, кольцо, поле, векторные пространства и модули. Отображения на алгебраических структурах и их свойства: гомоморфизмы, мономорфизмы, эпиморфизмы и изоморфизмы и их свойства. Ядро и образ морфизмов.	9	2			7	ПК-2	Вопросы и задания по теме
2	1/1	Кольца и подкольца. Области целостности. Типы колец: коммутативные кольца, булевы кольца, кольцо формальных степенных рядов, кольцо формальных степенных рядов Лоренца. Единицы колец и делители нуля. Нильпотенты колец. Критерий подколец. Правые и левые идеалы колец. Идеалы колец. Операции над идеалами. Простые и максимальные идеалы колец и их свойства.	11		2		9	ПК-2	Вопросы и задания по теме
3	1/1	Отношение эквивалентности и его свойства. Отношение сравнимости в кольце по модулю идеала. Факторгруппа и фактор-кольцо по идеалу в коммутативных кольцах. Теоремы об изоморфизме образа группы и кольца.	9				9	ПК-2	Вопросы и задания по теме
4	1/1	Образующие кольца. Главные идеалы кольца. Кольцо главных идеалов. Евклидово кольцо. Ассоциированные, простые и неприводимые элементы кольца. Доказательство того, что в кольце главных идеалов простота и неприводимость элементов равносильны. Доказательство обрыва возрастающей цепочки идеалов в кольце главных идеалов. Представление каждого не единичного элемента в виде произведения неприводимых и его однозначность.	11		2		9	ПК-2	Вопросы и задания по теме
5	1/1	Неприводимый многочлен над полем и его свойства. Теорема о кратности корней неприводимого многочлена. Минимальный аннулятор элемента, его степень и свойства этого многочлена. Раздел 2. Расширения полей. Их ви-	9				9	ПК-2	Вопросы и задания по теме
6	1/1	Разоел 2. Расширения полеи. Их ви- ды и свойства Расширение полей. Степень расши- рения. Закон башни. Гомоморфизм полей и его продолжение. Теорема	11	2			9	ПК-2	Вопросы и задания по

		Vnouvena a ranugy Muarautana Va	<u> </u>						TOLIO
		Кронекера о корнях многочлена. Конечнопорожденное расширение поля.							теме
		Простое расширение поля, примеры и							
		его свойства. Занятие проводится в							
		интерактивной форме - управляемая							
		дискуссия.							
7	1/1	Алгебраический и трансцендентный	9				9	ПК-2	Вопросы и
-	_, _	элементы поля. Алгебраическое и							задания по
		трансцендентное расширение поля.							теме
		Теорема об алгебраичности конечно-							
		го расширения поля. Теорема о про-							
		стом алгебраическом расширении							
		поля. F-гомоморфизмы полей и их							
		свойства. Теорема об эндоморфизме							
		поля. Занятие проводится в интерактивной форме - управляемая дискус-							
		сия.							
8	1/1	Теорема о связи алгебраичности рас-	11		2		9	ПК-2	Вопросы и
0	1/1	ширения и корня минимального ан-	11				,	THE Z	задания по
		нулятора. Понятие алгебраически							
		замкнутого поля. Алгебраическое							теме
		замыкание поля. Теорема о существо-							
		вании алгебраического замыкания							
		поля. Лемма о продолжении гомо-							
		морфизма поля в алгебраически за-							
		мкнутое поле. Теорема о существова-							
		нии продолжении гомоморфизма с							
		поля F в алгебраически замкнутое							
		поле на его алгебраическое расшире-							
0	1 /1	ние К. Поле разложения многочленов и его	9				9	ПК-2	Darmaarr
9	1/1	существование. Теорема о единствен-	9				9	11K-Z	Вопросы и
		ности поля разложения.							задания по
10	1 /1	*	9				9	ПК-2	теме
10	1/1	Нормальное расширение поля. Теорема о трех эквивалентных определе-	9				9	11K-2	Вопросы и
		ниях нормальности расширения поля.							задания по
		Теорема о том, что всякое нормаль-							теме
		ное расширение поля есть поле раз-							
		ложения какого-то многочлена.							
11	1/1	Простые поля. Характеристика коль-	9				9	ПК-2	Вопросы и
		ца и поля. Сепарабельные и несепа-							задания по
		рабельные многочлены. Теорема о							теме
		необходимом и достаточном условии							
		несепарабельности многочлена. При-							
		меры сепарабельных и несепарабель-							
12	1 /1	ных многочленов							
12	1/1	Раздел 3. Конечные поля. Их строе-							
	-	ние и свойства Конечные поля. Их строение и свой-	9				9	ПК-2	Romocra
		ства. Теорема о существовании поля	^				/	1111-2	Вопросы и
		из p^k — элементов для простого р и							задания по
		кє N. Лемма о числе корней сепара-							теме
		бельного многочлена в его поля раз-							
		ложения. Теорема о сепарабельности							
		многочлена $f(x)=x^n-1$. Теорема о							
		совпадении конечного поля с полем							
		разложения многочлена $f(x) = x^{p^n} - x$							
	<u> </u>	$f(x) = x^{\nu} - x$							<u> </u>
13	1/1	Структура мультипликативной груп-	11		2		9	ПК-2	Вопросы и
		пы конечного поля, теорема о ее цик-							задания по
		личности. Свойство сепарабельности							теме
		неприводимых многочленов над ко-							
		нечными полями. Автоморфизмы							
		Фробениуса конечных полей. Теоре-							
ĺ	1	ма о том, что группа автоморфизмов		Ī	Ī	1			

		конечного поля есть циклическая группа и порождена автоморфизмом Фробениуса.						
14	1/1	Сепарабельные расширения полей. Теорема о том, что любое конечное сепарабельное расширение является простым. Теорема о сохранении сепарабельности при конечных расширениях. Теорема о количестве продолжений гомоморфизмов. Совершенные поля. Необходимое и достаточное условие совершенности полей конечной характеристики.	9			9	ПК-2	Вопросы и задания по теме
		Контроль самостоятельной работы	8					
		ВСЕГО	136	4	8	124		

Для очно-заочной формы

<u>№</u> п/п	Курс/ семестр	Раздел, тема дисциплины	Общая трудо- емкость (в часах) всего	вклн ную ј ся	очая с работ и тру (в торнь	удоемко часах)	ятель- ющих-	Плани- руемые результа- ты обучения	Формы текущего контроля
		Раздел 1. Основные алгебраические структуры и их свойства							
1	1/1	Основные алгебраические структуры: полугруппа, моноид, группа, кольцо, поле, векторные пространства и модули. Отображения на алгебраических структурах и их свойства: гомоморфизмы, мономорфизмы, эпиморфизмы и изоморфизмы и их свойства. Ядро и образ морфизмов.	12	2	2	5	3	ПК-2	Вопросы и задания по теме
2	1/1	Кольца и подкольца. Области целостности. Типы колец: коммутативные кольца, булевы кольца, кольцо формальных степенных рядов, кольцо формальных степенных рядов Лоренца. Единицы колец и делители нуля. Нильпотенты колец. Критерий подколец. Правые и левые идеалы колец. Идеалы колец. Операции над идеалами. Простые и максимальные идеалы колец и их свойства.	10		2	5	3	ПК-2	Вопросы и задания по теме
3	1/1	Отношение эквивалентности и его свойства. Отношение сравнимости в кольце по модулю идеала. Факторгруппа и фактор-кольцо по идеалу в коммутативных кольцах. Теоремы об изоморфизме образа группы и кольца.	9	2		5	2	ПК-2	Вопросы и задания по теме
4	1/1	Образующие кольца. Главные идеалы кольца. Кольцо главных идеалов. Евклидово кольцо. Ассоциированные, простые и неприводимые элементы кольца. Доказательство того, что в кольце главных идеалов простота и неприводимость элементов равносильны. Доказательство обрыва воз-	10		2	5	3	ПК-2	Вопросы и задания по теме

	1				1			1	Т
		растающей цепочки идеалов в кольце главных идеалов. Представление каждого не единичного элемента в виде произведения неприводимых и его однозначность.							
5	1/1	Неприводимый многочлен над полем и его свойства. Теорема о кратности корней неприводимого многочлена. Минимальный аннулятор элемента, его степень и свойства этого многочлена.	9	2		5	2	ПК-2	Вопросы и задания по теме
		Раздел 2. Расширения полей. Их ви- ды и свойства							
6	1/1	Расширение полей. Степень расширения. Закон башни. Гомоморфизм полей и его продолжение. Теорема Кронекера о корнях многочлена. Конечнопорожденное расширение поля. Простое расширение поля, примеры и его свойства. Занятие проводится в интерактивной форме - управляемая дискуссия.	10	2		5	3	ПК-2	Вопросы и задания по теме
7	1/1	Алгебраический и трансцендентный элементы поля. Алгебраическое и трансцендентное расширение поля. Теорема об алгебраичности конечного расширения поля. Теорема о простом алгебраическом расширении поля. F-гомоморфизмы полей и их свойства. Теорема об эндоморфизме поля. Занятие проводится в интерактивной форме - управляемая дискуссия.	9		2	5	2	ПК-2	Вопросы и задания по теме
8	1/1	Теорема о связи алгебраичности расширения и корня минимального аннулятора. Понятие алгебраически замкнутого поля. Алгебраическое замыкание поля. Теорема о существовании алгебраического замыкания поля. Лемма о продолжении гомоморфизма поля в алгебраически замкнутое поле. Теорема о существовании продолжении гомоморфизма с поля F в алгебраически замкнутое поле на его алгебраическое расширение K.	9		2	5	2	ПК-2	Вопросы и задания по теме
9	1/1	Поле разложения многочленов и его существование. Теорема о единственности поля разложения.	9	2		5	2	ПК-2	Вопросы и задания по теме
10	1/1	Нормальное расширение поля. Теорема о трех эквивалентных определениях нормальности расширения поля. Теорема о том, что всякое нормальное расширение поля есть поле разложения какого-то многочлена.	10		2	5	3	ПК-2	Вопросы и задания по теме
11	1/1	Простые поля. Характеристика кольца и поля. Сепарабельные и несепарабельные и несепарабельные многочлены. Теорема о необходимом и достаточном условии несепарабельности многочлена. Примеры сепарабельных и несепарабельных многочленов	12	2	2	5	3	ПК-2	Вопросы и задания по теме
	1/1	Раздел 3. Конечные поля. Их строе- ние и свойства							
12		Конечные поля. Их строение и свой-	12	2	2	5	3	ПК-2	Вопросы и

		ства. Теорема о существовании поля из p^k — элементов для простого p и $k \in \mathbb{N}$. Лемма о числе корней сепарабельного многочлена в его поля разложения. Теорема о сепарабельности многочлена $f(x)=x^n-1$. Теорема о совпадении конечного поля с полем разложения многочлена $f(x)=x^{p^n}-x$.							задания по теме
13	1/1	Структура мультипликативной группы конечного поля, теорема о ее цикличности. Свойство сепарабельности неприводимых многочленов над конечными полями. Автоморфизмы Фробениуса конечных полей. Теорема о том, что группа автоморфизмов конечного поля есть циклическая группа и порождена автоморфизмом Фробениуса.	13	2	2	6	3	ПК-2	Вопросы и задания по теме
14	1/1	Сепарабельные расширения полей. Теорема о том, что любое конечное сепарабельное расширение является простым. Теорема о сохранении сепарабельности при конечных расширениях. Теорема о количестве продолжений гомоморфизмов. Совершенные поля. Необходимое и достаточное условие совершенности полей конечной характеристики.	10	2		6	2	ПК-2	Вопросы и задания по теме
		ВСЕГО	144	18	18	72	36		

6. Основные формы учебной работы и образовательные технологии, используемые при реализации образовательной программы

вид учебных	Организация деятельности студента
занятий	
Лекция	Написание конспекта лекций: краткое, схематичное, последовательное фиксирование основных положений, выводов, формулировок, обобщений; выделение ключевых слов, терминов. Проверка терминов, понятий с помощью справочников с выписыванием в тетрадь. Обозначение вопросов, терминов, материала, вызывающего трудности. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии. Уделить внимание следующим понятиям (перечисление понятий) и др.
Практические заня- тия	Конспектирование источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы, работа с текстом (указать текст из источника и др.). Прослушивание аудио- и видеозаписей по заданной теме, решение расчетно-графических заданий, решение задач по алгоритму и др.
Контрольная работа/ индивидуальные задания	Знакомство с основной и дополнительной литературой, включая справочные издания, зарубежные источники, конспект основных положений, терминов, сведений, требующих для запоминания и являющихся основополагающими в этой теме. Составление аннотаций к прочитанным литературным источникам и др.
Коллоквиум	Работа с конспектом лекций, подготовка ответов к контрольным вопросам и др.
Подготовка к экза- мену	При подготовке к экзамену (зачету) необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и др.

Самостоятельная работа студентов по дисциплине «Современная алгебра» предполагает более глубокую проработку ими отдельных тем курса, определенных программой. Основными видами и формами самостоятельной работы студентов по данной дисциплине являются:

- подготовка докладов к практическим занятиям;
- самоподготовка по вопросам;
- подготовка к экзамену.

Важной частью самостоятельной работы является изучение учебной литературы. Основная функция учебников - ориентировать магистранта в системе тех знаний, умений и навыков, которые должны быть усвоены по данной дисциплине будущими специалистами. В процессе изучения данной дисциплины учитывается посещаемость лекций, оценивается активность студентов на практических занятиях, а также качество и своевременность подготовки теоретических материалов, докладов. По окончании изучения дисциплины проводится экзамен по предложенным вопросам и заданиям.

Вопросы, выносимые на экзамен, должны служить постоянными ориентирами при организации самостоятельной работы студента. Таким образом, усвоение учебного предмета в процессе самостоятельного изучения учебной и научной литературы является и подготовкой к экзамену, а сам экзамен становится формой проверки качества всего процесса учебной деятельности магистранта.

Магистрант, показавший высокий уровень владения знаниями, умениями и навыками по предложенному вопросу, считается успешно освоившим учебный курс. В случае большого количества затруднений при раскрытии предложенного на экзамене вопроса магистранту предлагается повторная сдача в установленном порядке.

Для успешного овладения курсом необходимо выполнять следующие требования:

- 1) посещать все занятия, т.к. весь тематический материал взаимосвязан между собой и теоретического овладения пропущенного недостаточно для качественного усвоения;
- 2) все рассматриваемые на практических занятиях темы обязательно конспектировать в отдельную тетрадь и сохранять её до окончания обучения в вузе;
 - 3) обязательно выполнять все домашние задания;
- 4) проявлять активность на занятиях и при подготовке, т.к. конечный результат овладения содержанием дисциплины необходим, в первую очередь, самому магистранту;
- 5) в случаях пропуска занятий, по каким-либо причинам, обязательно «отрабатывать» пропущенное занятие преподавателю во время индивидуальных консультаций.

Методические рекомендации по освоению лекционного материала, подготовке к лекциям

Лекция - ведущая форма организации учебного процесса в вузе. Половину аудиторных занятий по курсу «Современная алгебра» составляют лекции, поэтому умение работать на них - насущная необходимость магистранта. Принято выделять три этапа этой работы. Первый - предварительная подготовка к восприятию, в которую входит просмотр записей предыдущей лекции, ознакомление с соответствующим разделом программы и предварительный просмотр учебника по теме предстоящей лекции, создание целевой установки на прослушивание.

Второй - прослушивание и запись, предполагающие внимательное слушание, анализ излагаемого, выделение главного, соотношение с ранее изученным материалом и личным опытом, краткую запись, уточнение непонятного или противоречиво изложенного материала путем вопросов лектору. Запись следует делать либо на отдельных пронумерованных листах, либо в тетради. Обязательно надо оставлять поля для методических пометок, дополнений. Пункты планов, формулировки правил, понятий следует выделять из общего текста. Целесообразно пользоваться системой сокращений наиболее часто употребляемых терминов, а также использовать цветовую разметку записанного при помощи фломастеров.

Третий - доработка лекции: перечитывание и правка записей, параллельное изучение учебника, дополнение выписками из рекомендованной литературы, заучивание ос-

новных определений, теорем и их доказательств.

Методические рекомендации по подготовке к практическим занятиям

Целями освоения дисциплины (модуля) «Современная алгебра» являются вооружение студентов знанием актуальные проблем алгебры.

При подготовке магистрантов к практическим занятиям по курсу необходимо не только знакомить студентов с теориями и методами практики, но и стремиться отрабатывать на практике необходимые навыки и умения.

Практическое занятие - это активная форма учебного процесса в вузе, направленная на умение магистрантов переработать учебный текст, обобщить материал, развить критичность мышления, отработать практические навыки в решении задач.

В рамках курса «Современная алгебра» практические занятия включают разбор отдельных вопросов, теорем и их доказательств, решение задач.

При проведении учебных занятий по дисциплине используются традиционные и инновационные, в том числе информационные образовательные технологии, включая при необходимости применение активных и интерактивных методов обучения.

Традиционные образовательные технологии реализуются, преимущественно, в процессе лекционных и практических (семинарских, лабораторных) занятий. Инновационные образовательные технологии используются в процессе аудиторных занятий и самостоятельной работы студентов в виде применения активных и интерактивных методов обучения.

Информационные образовательные технологии реализуются в процессе использования электронно-библиотечных систем, электронных образовательных ресурсов и элементов электронного обучения в электронной информационно-образовательной среде для активизации учебного процесса и самостоятельной работы студентов.

Развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств при проведении учебных занятий.

Практические (семинарские занятия относятся к интерактивным методам обучения и обладают значительными преимуществами по сравнению с традиционными методами обучения, главным недостатком которых является известная изначальная пассивность субъекта и объекта обучения.

Практические занятия могут проводиться в форме групповой дискуссии, «мозговой атаки», разборка кейсов, решения практических задач и др. Прежде, чем дать группе информацию, важно подготовить участников, активизировать их ментальные процессы, включить их внимание, развивать кооперацию и сотрудничество при принятии решений.

Методические рекомендации по проведению различных видов практических (семинарских) занятий.

1.Обсуждение в группах

Групповое обсуждение какого-либо вопроса направлено на нахождении истины или достижение лучшего взаимопонимания, Групповые обсуждения способствуют лучшему усвоению изучаемого материала.

На первом этапе группового обсуждения перед обучающимися ставится проблема, выделяется определенное время, в течение которого обучающиеся должны подготовить аргументированный развернутый ответ.

Преподаватель может устанавливать определенные правила проведения группового обсуждения:

- -задавать определенные рамки обсуждения (например, указать не менее 5.... 10 ошибок):
 - -ввести алгоритм выработки общего мнения (решения);
 - -назначить модератора (ведущего), руководящего ходом группового обсуждения.

На втором этапе группового обсуждения вырабатывается групповое решение совместно с преподавателем (арбитром).

Разновидностью группового обсуждения является круглый стол, который проводится с целью поделиться проблемами, собственным видением вопроса, познакомиться с опытом, достижениями.

2.Публичная презентация проекта

Презентация – самый эффективный способ донесения важной информации как в разговоре «один на один», так и при публичных выступлениях. Слайд-презентации с использованием мультимедийного оборудования позволяют эффективно и наглядно представить содержание изучаемого материала, выделить и проиллюстрировать сообщение, которое несет поучительную информацию, показать ее ключевые содержательные пункты. Использование интерактивных элементов позволяет усилить эффективность публичных выступлений.

3.Дискуссия

Как интерактивный метод обучения означает исследование или разбор. Образовательной дискуссией называется целенаправленное, коллективное обсуждение конкретной проблемы (ситуации), сопровождающейся обменом идеями, опытом, суждениями, мнениями в составе группы обучающихся.

Как правило, дискуссия обычно проходит три стадии: ориентация, оценка и консолидация. Последовательное рассмотрение каждой стадии позволяет выделить следующие их особенности.

Стадия ориентации предполагает адаптацию участников дискуссии к самой проблеме, друг другу, что позволяет сформулировать проблему, цели дискуссии; установить правила, регламент дискуссии.

В стадии оценки происходит выступление участников дискуссии, их ответы на возникающие вопросы, сбор максимального объема идей (знаний), предложений, пресечение преподавателем (арбитром) личных амбиций отклонений от темы дискуссии.

Стадия консолидации заключается в анализе результатов дискуссии, согласовании мнений и позиций, совместном формулировании решений и их принятии.

В зависимости от целей и задач занятия, возможно, использовать следующие виды дискуссий: классические дебаты, экспресс-дискуссия, текстовая дискуссия, проблемная дискуссия, ролевая (ситуационная) дискуссия.

7. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

7.1. Описание шкал оценивания степени сформированности компетенций

Уровни		Качественные критерии оценивание			
сформирован ности компетенций	Индикаторы	2 балла	3 балла	4 балла	5 баллов
			ПК-2		
Базовый	проведения ис- следований в области матема- тики и матема- тического обра- зования Уметь: решать задачи совре- менной алгебры, решать исследо-	ные идеи, принципы и методы современной алгебры, особенности проведения исследований в области математики и математического образования Не умеет решать задачи современной алгебры, ре-	В основном знает основные идеи, принципы и методы современной алгебры, особенности проведения исследований в области математики и математики и математического образования В основном умеет решать задачи современной алгебры, решать исследователь.	задачи современной алгебры, ре-	

:		1	Т	Т	
		_	ские задачи с учётом содержательного и организационного контекстов	_	
	задач современной алгебры, навыками разработки алгоритма и способов достижения проектируемых уровней своего профессионального	тодами решения задач современной алгебры навыками разработки алгоритма и способов достижения проектируемых уровней своего професси-	ния задач современной алгебры навыками разработки алгоритма и способов достижения проектиру-	ми решения задач современной ал- гебры, навыками разработки алго- ритма и способов достижения про- ектируемых уров- ней своего про- фессионального и	
Повышенный	Знать: особенности проведения исследований в области математики и математического образования				Знает в полном объеме основные идеи, принципы и методы современной алгебры, особенности проведения исследований в области математики и математического образования
	Уметь: решать исследовательские задачи с учётом содержательного и организационного контекстов				Умеет в полном объеме решать задачи современной алгебры, решать исследовательские задачи с учётом содержательного и организационного контекстов
	Владеть: навы- ками разработки алгоритма и спо- собов достиже- ния проектируе- мых уровней своего профес- сионального и личностного ро- ста				Владеет в полном объеме методами решения задач современной алгебры, навыками разработки алгоритма и способов достижения проектируемых уровней своего профессионального и личностного роста

7.2. Типовые контрольные задания или иные учебно-методические материалы, необходимые для оценивания степени сформированности компетенций в процессе освоения учебной дисциплины

7.2.1.Типовые задания к контрольным работам

1. В множестве K, состоящем из 8 элементов: 1, - l, i, j, k, - i,-j,-k, задано действие при помощи таблицы умножения:

```
1 -1-ii -jj -kK

1 1 -1-ii -jj -kK

-1-11 i -ij -jk -k

i I -i1 -1-kk j -j

-i-ii -11 k -k-jJ

j j -jk -k1 -1-ii

-j-jj -kk -11 i -i

k k -k-jj i -i1 -1

-k-kk j -j-ii -11
```

- а) Доказать, что это множество является группой. Эта группа носит название группы кватернионов.
- б) Доказать, что она изоморфна Q8.
- в) Определить порядки всех элементов этой группы.
- г) Найти все подгруппы этой группы.
- 2. Шесть функций: x->x; x->1/(1-x); x->(x-1)/x; 1/x; x/(x-1); x->1-x. из множества M всех вещественных чисел, отличных от 0 и 1 образуют группу относительно операции композиции функций fg(x)=g(f(x)). Доказать, что она изоморфна S3 (группа перестановок порядка 3).
- 3. Доказать, что конечная подгруппа мультипликативной группы любого поля циклическая.
- 4. Описать подгруппу квадратов в поле из 2n.
- 5. Пусть F поле из q элементов и n некоторое натуральное число. Показать, что в F[x] существуют неприводимые многочлены степени deg = n.

Контрольная работа № 2.

- 1 Доказать, что если (u, v)=1, то (u+v, u-v)=1 либо (u+v, u-v)=2.
- 2. Доказать, что $\sqrt[n]{m}$ число иррациональное, если m не является n-ой степенью натурального числа.
- 3. Доказать, что 2 делится на (1+i)2 в Z[i].
- 4. Для $\alpha = a + b\omega$ из $\mathbf{Z}[\omega]$ определим $\lambda(\alpha) = a^2 ab + b^2$. Показать, что α является единицей, тогда и только тогда, когда $\lambda(\alpha) = 1$.
- 5. Определим $Z[\sqrt{-2}]$ как множество комплексных чисел вида $a+b\sqrt{-2}$, где a, b целые числа. Показать, что $Z[\sqrt{-2}]$ евклидово кольцо.

Критерии оценивания:

- оценка «отлично» выставляется, если безошибочно выполнены все задания;
- оценка «хорошо» выставляется, если выполнены все задания, но допущены ошибки, не влияющие на ход и смысл их решения;
- оценка «удовлетворительно» выставляется, если выполнено правильно хотя бы одно задание работы;
- оценка «неудовлетворительно» выставляется, если не выполнено правильно ни одного задания.

7.2.2. Примерные вопросы к итоговой аттестации (экзамен)

1. Основные алгебраические структуры: полугруппа, моноид, группа, кольцо, поле, векторные пространства и модули.

- 2. Отображения на алгебраических структурах и их свойства: гомоморфизмы, мономорфизмы, эпиморфизмы и изоморфизмы и их свойства.
- 3. Ядро и образ морфизмов. Кольца и подкольца. Области целостности.
- 4. Типы колец: коммутативные кольца, булевы кольца, кольцо формальных степенных рядов, кольцо формальных степенных рядов Лоренца.
- 5. Единицы колец и делители нуля. Нильпотенты колец. Критерий подколец.
- 6. Правые и левые идеалы колец. Идеалы колец. Операции над идеалами. Простые и максимальные идеалы колец и их свойства.
- 7. Отношение эквивалентности и его свойства. Отношение сравнимости в кольце по модулю идеала.
- 8. Фактор-группа и фактор-кольцо по идеалу в коммутативных кольцах. Теоремы об изоморфизме образа группы и кольца.
- 9. Образующие кольца. Главные идеалы кольца. Кольцо главных идеалов. Евклилово кольцо. Ассоциированные, простые и неприводимые элементы кольца.
- 10. Доказательство того, что в кольце главных идеалов простота и неприводимость элементов равносильны.
- 11. Доказательство обрыва возрастающей цепочки идеалов в кольце главных идеалов. Представление каждого не единичного элемента в виде произведения неприводимых и его однозначность.
- 12. Неприводимый многочлен над полем и его свойства. Теорема о кратности корней неприводимого многочлена. Минимальный аннулятор элемента, его степень и свойства этого многочлена.
- 13. Расширение полей. Степень расширения. Закон башни. Гомоморфизм полей и его продолжение.
- 14. Теорема Кронекера о корнях многочлена. Конечнопорожденное расширение поля.
- 15. Простое расширение поля, примеры и его свойства.
- 16. Алгебраический и трансцендентный элементы поля. Алгебраическое и трансцендентное расширение поля. Теорема об алгебраичности конечного расширения поля.
- 17. Теорема о простом алгебраическом расширении поля. F-гомоморфизмы полей и их свойства.
- 18. Теорема об эндоморфизме поля.
- 19. Теорема о связи алгебраичности расширения и корня минимального аннулятора.
- 20. Понятие алгебраически замкнутого поля. Алгебраическое замыкание поля. Теорема о существовании алгебраического замыкания поля.
- 21. Лемма о продолжении гомоморфизма поля в алгебраически замкнутое поле.
- 22. Теорема о существовании продолжении гомоморфизма с поля F в алгебраически замкнутое поле на его алгебраическое расширение K.
- 23. Поле разложения многочленов и его существование. Теорема о единственности поля разложения.
- 24. Нормальное расширение поля. Теорема о трех эквивалентных определениях нормальности расширения поля.
- 25. Теорема о том, что всякое нормальное расширение поля есть поле разложения какого-то многочлена.
- 26. Простые поля. Характеристика кольца и поля.
- 27. Сепарабельные и несепарабельные многочлены. Теорема о необходимом и достаточном условии несепарабельности многочлена. Примеры сепарабельных и нееспарабельных многочленов.

- 28. Конечные поля. Их строение и свойства. Теорема о существовании поля из p^k элементов для простого p и $k \in N$.
- 29. Лемма о числе корней сепарабельного многочлена в его поля разложения. Теорема о сепарабельности многочлена $f(x)=x^n-1$.
- 30. Теорема о совпадении конечного поля с полем разложения многочлена $f(x) = x^{p^n} x$
- 31. Структура мультипликативной группы конечного поля, теорема о ее цикличности. Свойство сепарабельности неприводимых многочленов над конечными полями.
- 32. Автоморфизмы Фробениуса конечных полей. Теорема о том, что группа автоморфизмов конечного поля есть циклическая группа и порождена автоморфизмом Фробениуса.
- 33. Сепарабельные расширения полей. Теорема о том, что любое конечное сепарабельное расширение является простым.
- 34. Теорема о сохранении сепарабельности при конечных расширениях.
- 35. Теорема о количестве продолжений гомоморфизмов.
- 36. Совершенные поля. Необходимое и достаточное условие совершенности полей конечной характеристики.

7.2.3. Комплект тестов для проверки знаний обучающихся

Задание 1. (ПК-2)

✓ поле✓ кольцо☐ полугруппу

Последовательность алгебраических систем, расположенных в порядке увеличения предъявляемых к ним требований

предвявляемых к ним треоовании
1: полугруппа
2: моноид
3: группа
4: абелева группа
Задание 2. (ПК-2)
A лгебра $\left\langle R^{\scriptscriptstyle +},\cdot,^{\scriptscriptstyle -1} ight angle$ является
<i>⊠</i> группой
☑ полугруппой
□ полем
□ кольцом
Задание 3. (ПК-2)
$\mathit{Omoбраж}\mathit{eh}\mathbf{w}\mathit{\phi}\mathit{множ}\mathit{ecmsaR}^{\scriptscriptstyle +}\mathit{c}\mathit{onepaqueŭ}\mathit{yмнож}\mathit{eh}\mathit{us}$
намножествоR с операцией сложения по правилу
$\varphi(a) = \lg a$ является
∅ взаимно-однозначным
☑ гомоморфным
☑ изоморфным
□ тождественным
Задание 4. (ПК-2)
4 иславида $a+b\sqrt{3}$, где a и $b-$ рациональные числа
относительнообычныхопераций"+"и":" образуют:

Задание 5. (ПК-2)

Взаимно-однозначное соответствие между элементами алгебраических систем, сохраняющее определенные в них операции, называется ...

Правильные варианты ответа: изоморфизмом; изоморфизм;

Задание 6. (ПК-2)

Кольцо, изоморфное полю, является ...

Правильные варианты ответа: полем;

Задание 7. (ПК-2)

Область целостности не имеет ...

Правильные варианты ответа: делителей нуля;

Задание 8. (ПК-2)

Кольцо К, являющееся расширением множества М с двумя алгебраическими операциями, не имеющее отличного от себя подкольца, содержащего множество М, называется ...кольцом, содержащим множество М

Правильные варианты ответа: минимальным;

Задание 9. (ПК-2)

Любое непустое множество целых чисел, ограниченное снизу, имеет ... элемент.

Правильные варианты ответа: наименьший;

Задание 10. (ПК-2)

Отображение множества целых чисел на множество {-1,1} по правилу: каждое четное число с	οτοb-
ражается в 1, а нечетное число отображается в -1 является	

V	гомоморфны
---	------------

1 1	мынфаомоги	ı
	NSOMODWADIM	١

□ взаимно-однозначным

□ тождественным

Задание 11. (ПК-2)

Система целых чисел образует

☑ область целостности

☑ кольцо

□ поле

✓ упорядоченное кольцо

□ упорядоченное поле

Задание 12. (ПК-2)

Если множество М с двумя алгебраическими операциями (сложением и умножением) содержится в кольце К относительно этих же операций, то кольцо К называется ... множества М.

Правильные варианты ответа: расширением; расширение;

Задание 13. (ПК-2)

Минимальное поле, содержащее кольцо целых чисел, является системой ... чисел.

Правильные варианты ответа: рациональных;

Задание 14. (ПК-2)

Любое числовое поле содержит поле ... чисел

Правильные варианты ответа: рациональных;

Задание 15. (ПК-2)

Алгебра
$$\langle Z[2],+,-,\cdot,1\rangle$$
, где $Z[2]=\left\{m+n\sqrt{2}|m,n\in Z\right\}$

является

□ полукольцом

кольцом

☑ коммутативным кольцом

□ полем

Задание 16. (ПК-2)

они образуют вместе с обычными операци	ями сложения и умножения их элементов.
множество натуральных чисел	полукольцо
множество целых чисел	кольцо
множество рациональных чисел	поле
множество действительных чисел	поле
множество комплексных чисел	поле
множество кватернионов	тело
	2
Задание 17. (ПК-2)	
На множестве натуральных чисел определена о	структура
☑ мультипликативного моноида	
мультипликативной группы	
☑ аддитивного моноида	
□ аддитивной группы	
Задание 18. (ПК-2)	
Система натуральных чисел является	
✓ упорядоченным полукольцом☐ упорядоченным кольцом	
□ кольцом	
Задание 19 (ПК-2)	
Пусть А и В - конечные множества, состоящие и	из m и n элементов, соответственно.
Тогда число инъективных отображений А в В ра	
\square $n(n-1)(n-m+1)$	
$\square n^m$	
\square m^n	
\square $m \cdot n$	
Задание 20. (ПК-2)	
Пусть А и В - конечные множества, состоящие и	из m и n элементов, соответственно. Тогда число
всевозможных отображений множества А в В р	равно
\square $m \cdot n$	
\square m^n	
Задание 21. (ПК-2)	
B системе $\langle N,+,\cdot,1 \rangle$ существует	
бесконечномногоподполугрупп, изол	морфных
полугруппе $\langle N,\!+ angle$ н атуральн ь $oldsymbol{\kappa}$ чисел	ı
толькоодн аподполугруппа, изомо	рфная
$^{\square}$ полугруппе $\langle N,\!+ angle$ натуральных чис	сел
толькоодн оподполукољцо, изомо	рфное
$lacktriangledown$ полукольцу $\langle N,+,\cdot angle$ натуральных чи	исел
бесконечномногоподполуколец, из	зоморфных
$^{\square}$ полукольцу $\langle N,+, angle$ н атуральн ых чи	<i>исел</i>

Соответствие между числовыми множествами и алгебраическими структурами, которые

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

8.1. Основная литература:

- 1. Кондратьев, Г. В. Геометрическая алгебра Клиффорда: монография / Г.В. Кондратьев. Москва: ИНФРА-М, 2022. 217 с. (Научная мысль). DOI 10.12737/1832489. ISBN 978-5-16-017235-4. Текст: электронный. URL: https://znanium.com/catalog/product/1832489 Режим доступа: по подписке.
- 2. Численные методы линейной алгебры: учебное пособие. 3-е изд., перераб. и доп. Москва: Магистр, 2021. 528 с. ISBN 978-5-16-109374-0. Текст: электронный. URL: https://znanium.com/catalog/product/1238539 . Режим доступа: по подписке.
- 3. Шевцов, Г. С. Линейная алгебра: теория и прикладные аспекты: Учебное пособие / Г.С. Шевцов. 3-е изд., испр. и доп. М.: Магистр: НИЦ ИНФРА-М, 2019. 544 с. ISBN 978-5-9776-0258-7. Текст: электронный. URL: https://znanium.com/catalog/product/1015326 Режим доступа: по подписке.
- 4. Юдович В.И. Математические модели естественных наук. Издательство: "Лань", ISBN: 978-5-8114-1118-4, 2011, 336 стр. http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=689

8.2. Дополнительная литература

- 1. Винберг Э.Б. Курс алгебры.- М.:МЦНМО, 2011 //biblioclub.ru
- 2. Ильин В.А. Элементы абстрактной и компьютерной алгебры: учебник М.: Физмалит, 2011, // biblioclub.ru
- 3. Кочетова Ю.В. Алгебра. Конечномерные пространства. Линейные операторы: курс лекций. М.: Прометей, 3013-80 с. // biblioclub.ru

9. Требования к условиям реализации рабочей программы дисциплины (модуля)

9.1. Общесистемные требования

Электронная информационно-образовательная среда ФГБОУ ВО «КЧГУ»

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронной информационно-образовательной среде (ЭИОС) Университета из любой точки, в которой имеется доступ к информационнотелекоммуникационной сети «Интернет», как на территории Университета, так и вне ее.

Функционирование ЭИОС обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих. Функционирование ЭИОС соответствует законодательству Российской Федерации.

Адрес официального сайта университета: http://kchgu.ru.

Адрес размещения ЭИОС ФГБОУ ВО «КЧГУ»: https://do.kchgu.ru.

Электронно-библиотечные системы (электронные библиотеки)

Учебный год	Наименование документа с указанием рек- визитов	Срок действия документа
2024-2025 учебный год	Электронно-библиотечная система ООО «Знаниум». Договор № 238 эбс от 23.04.2024 г. Электронный адрес: https://znanium.com	От 23.04.2024г. до 11.05.2025г.
2024-2025 учебный год	Электронно-библиотечная система «Лань». Договор № 36 от 14.03.2024 г. Электронный адрес: https://e.lanbook.com	По 19.01.2025г.
2024-2025 учебный год	Электронно-библиотечная система КЧГУ. Положение об ЭБ утверждено Ученым советом от 30.09.2015г. Протокол № 1. Электронный адрес: http://lib.kchgu.ru	Бессрочный

2024-2025	Национальная электронная библиотека (НЭБ).	
учебный год	Договор №101/НЭБ/1391-п от 22. 02. 2023 г.	Бессрочный
	Электронный адрес: http://rusneb.ru	
2024-2025	Научная электронная библиотека	
учебный год	«ELIBRARY.RU». Лицензионное соглашение	Госороничий
	№15646 от 21.10.2016 г.	Бессрочный
	Электронный адрес: http://elibrary.ru	
2024-2025	Электронный ресурс Polpred.comОбзор СМИ.	
учебный год	Соглашение. Бесплатно.	Бессрочный
	Электронный адрес: http://polpred.com	

9.2. Материально-техническое и учебно-методическое обеспечение дисциплины

Занятия проводятся в учебных аудиториях, предназначенных для проведения занятий лекционного и практического типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации в соответствии с расписанием занятий по образовательной программе. С описанием оснащенности аудиторий можно ознакомиться на сайте университета, в разделе материально-технического обеспечения и оснащенности образовательного процесса по адресу: https://kchgu.ru/sveden/objects/

9.3. Необходимый комплект лицензионного программного обеспечения

- MicrosoftWindows (Лицензия № 60290784), бессрочная
- MicrosoftOffice (Лицензия № 60127446), бессрочная
- ABBY FineReader (лицензия № FCRP-1100-1002-3937), бессрочная
- CalculateLinux (внесён в ЕРРП Приказом Минкомсвязи №665 от 30.11.2018-2020), бессрочная
 - Google G Suite for Education (IC: 01i1p5u8), бессрочная
- Kaspersky Endpoint Security (Лицензия № 280E-210210-093403-420-2061), с
 25.01.2023 г. по 03.03.2025 г.

9.4. Современные профессиональные базы данных и информационные справочные системы

- 1. Федеральный портал «Российское образование»- https://edu.ru/documents/
- 2. Единая коллекция цифровых образовательных ресурсов (Единая коллекция ЦОР) http://school-collection.edu.ru/
- 3. Базы данных Scopus издательства Elsevirhttp://www.scopus.com/search/form.uri?display=basic.
- 4. Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru.
- 5. Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://edu.ru.
- 6. Единая коллекция цифровых образовательных ресурсов (Единая коллекция ЦОР) http://school-collection.edu.ru.
- 7. Информационная система «Единое окно доступа к образовательным ресурсам» (ИС «Единое окно») http://window/edu.ru.

10. Особенности организации образовательного процесса для лиц с ограниченными возможностями здоровья

В ФГБОУ ВО «Карачаево-Черкесский государственный университет имени У.Д. Алиева» созданы условия для получения высшего образования по образовательным программам обучающихся с ограниченными возможностями здоровья (ОВЗ).

Специальные условия для получения образования по ОПВО обучающимися с ограниченными возможностями здоровья определены «Положением об обучении лиц с ОВЗ в

КЧГУ», размещенным на сайте Университета по адресу: http://kchgu.ru.

11. Лист регистрации изменений

В рабочей программе внесены следующие изменения:

Изменение	Дата и номер ученого	Дата и номер про-	Дата введе-
	совета факульте-	токола ученого	ния измене-
	та/института, на кото-	совета Универси-	ний
	ром были рассмотрены	тета, на котором	
	вопросы о необходимо-	были утверждены	
	сти внесения измене-	изменения	
	ний		
Обновлены договоры:			30.05.2024г.,
1. На антивирус Кас-		29.05.2024г.,	
перского. (Договор			
№56/2023 от 25 января		протокол № 8	
2023г.). Действует до			
03.03.2025г.			
2.Договор № 915 ЭБС			
ООО «Знаниум» от			
12.05.2023г. Действует			
до 15.05.2024г.			
3.Договор № 36 от			
14.03.2024г. эбс			
«Лань». Действует по			
19.01.2025г.			
4.Договор № 238 эбс			
ООО «Знаниум» от			
23.04.2024г. Действует			
до 11 мая 2025г.			